Risk Measurement for Financial Institutions

Dr. Graeme West
Financial Modelling Agency
CAM Dept, University of the Witwatersrand

January 26, 2004
Contents

1 Risk types and their measurement 3
 1.1 Market Risk 3
 1.2 Credit Risk 3
 1.3 Market imperfections 5
 1.4 Liquidity risk 6
 1.5 Operational risk 6
 1.6 Legal risk 7

2 Infamous risk management disasters 8
 2.1 Wall street crash of 1987 8
 2.2 Metallgesellschaft 8
 2.3 Kidder Peabody 10
 2.4 Barings 10
 2.5 US S&L Industry 10
 2.6 Orange County 11
 2.7 LTCM 11
 2.8 Allied Irish Bank 12
 2.9 National Australia Bank 12

3 Value at Risk 14
 3.1 VAR: Basic Definitions 14
 3.2 Calculation of VaR 16
 3.2.1 RiskMetrics© 17
 3.2.2 Historical simulation methods 24
4 Stress testing and Sensitivities

4.1 VaR can be an inadequate measure of risk

4.2 Stress Testing

4.3 Other risk measures and their uses

4.4 Calculation of sensitivities

5 Backtesting VaR

5.1 The rationale of backtesting

5.2 The Technical Details

5.3 Other requirements for internal model approval

5.4 The new requirements for Basel II - credit and operational risk measures

6 Coherent risk measures

6.1 VaR cannot be used for calculating diversification

6.2 Risk measures and coherence

6.3 Measuring diversification

6.4 Coherent capital allocation

6.5 Greek Attribution
Chapter 1

Risk types and their measurement

There are various types of risk. A common classification of risks is based on the source of the underlying uncertainty.

1.1 Market Risk

By market risk, we mean the potential for unexpected changes in value of a position resulting from changes in market prices, which results in uncertainty of future earnings resulting from changes in market conditions, (e.g., prices of assets, interest rates).

These pricing parameters include security prices, interest rates, volatility, and correlation and inter-relationships.

Over the last few years measures of market risk have evolved to become synonymous with stress testing, measurement of sensitivities, and VaR measurement.

1.2 Credit Risk

Credit risk is a significant element of the galaxy of risks facing the derivatives dealer and the derivatives end-user. There are different grades of credit risk. The most obvious one is the risk of default. Default means that the counterparty to which one is exposed will cease to make payments on obligations into which it has entered because it is unable to make such payments.

This is the worst case credit event that can take place. From this point of view, credit risk has three main components:

- Probability of default - probability that a counterparty will not be able to meet its contractual obligations
Figure 1.1: Widening spreads in ytm for bonds of different creditworthiness

- Recovery Rate - percentage of the claim we will recover if the counterparty defaults
- Credit Exposure - this related to the exposure we have if the counterparty defaults

But this view is very naive. An intermediate credit risk occurs when the counterparty’s creditworthiness is downgraded by the credit agencies causing the value of obligations it has issued to decline in value. One can see immediately that market risk and credit risk interact in that the contracts into which we enter with counterparties will fluctuate in value with changes in market prices, thus affecting the size of our credit exposure. Note also that we are only exposed to credit risk on contracts in which we are owed some form of payment. If we owe the counterparty payment and the counterparty defaults, we are not at risk of losing any future cash flows.

The effect of a change in credit quality can be very gradual. In the graph, we have the time series of the difference of the ytm’s of the tk01 and e168 to the r153. These bonds have maturity 31 Mar 2008 and 1 Jun 2008 and 31 Aug 2010 respectively, with annual coupons of 10%, 11% and 13% respectively. Thus, they are (or should be) very similar bonds. There are differences in creditworthiness however, and this distinction has become more apparent with the ANC government and the stated intention of the privatisation of the parastatals. Previously, NP government guarantees of the performance of the parastatals was implicit. Credit risk is one source of market risk, but is not always priced properly.
1.3 Market imperfections

Within credit markets, two important market imperfections, adverse selection and moral hazard, imply that there are additional benefits from controlling counterparty credit risk, and from limiting concentrations of credit risk by industry, geographic region, and so on. This piece is adapted from [1].

Adverse selection

Suppose, as is often the case with a simple loan, that a borrower knows more than its lender, say a bank, about the borrower’s credit risk. Being at an informational disadvantage, the bank, in light of the distribution of default risks across the population of borrowers, may find it profitable to limit borrowers’ access to the bank’s credit, rather than allowing borrowers to select the sizes of their own loans without restriction. An attempt to compensate for credit risk by specifying a higher average interest rate, or by a schedule of interest rates that increases with the size of the loan, may have unintended consequences. A disproportionate fraction of borrowers willing to pay a high interest rate on a loan are privately aware that their own high credit risk makes even the high interest rate attractive. An interest rate so high that it compensates for this adverse selection could mean that almost no borrower finds a loan attractive, and that the bank would do little or no business.

It usually is more effective to limit access to credit. Even though adverse selection can still occur to some degree, the bank can earn profits on average, depending on the distribution of default risk in the population of borrowers. When a bank does have some information on the credit quality of individual borrowers (that it can legally use to set borrowing rates or access to credit) the bank can use both price and quantity controls to enhance the profitability of its lending operations. For example, banks typically set interest rates according to the credit ratings of borrowers, coupled with limited access to credit.

In the case of an over-the-counter derivative, such as a swap, an analogous asymmetry of credit information often exists. For example, counterparty A is typically better informed about its own credit quality than about the credit quality of counterparty B. (Likewise B usually knows more about its own default risk than about the default risk of A.) By the same adverse-selection reasoning described above for loans, A may wish to limit the extent of its exposure to default by B. Likewise, B does not wish its potential exposure to default by counterparty A to become large. Rather than limiting access to credit in terms of the notional size of the swap, or its market value (which in any case is typically zero at inception), it makes sense to measure credit risk in terms of the probability distribution of the exposure to default by the other counterparty.

Moral hazard

Within banking circles, there is a well known saying: “If you owe your bank R100,000 that you don’t have, your are in big trouble. If you owe your bank R100,000,000 that you don’t
have, your bank is in big trouble.” One of the reasons that large loans are more risky than small loans, other things being equal, is that they provide incentives for borrowers to undertake riskier behaviour. If these big bets turn out badly (as they ultimately did in many cases) the risk takers can walk away. If the big bets pay off, there are large gains.

An obvious defence against the moral hazard induced by offering large loans to risky borrowers is to limit access to credit. The same story applies, in effect, with over-the-counter derivatives. Indeed, it makes sense, when examining the probability distribution of credit exposure on an OTC derivative, to use measures that place special emphasis on the largest potential exposures.

1.4 Liquidity risk

Liquidity risk is reflected in the increased costs of adjusting financial positions. This may be evidenced by bid-ask spreads widening; more dramatically arbitrage-free relationships fail or the market may disappear altogether. In extreme conditions a firm may lose its access to credit, and have an inability to fund its illiquid assets.

There are 2 types of liquidity risk:

- Normal or usual liquidity risk - this risk arises from dealing in markets that are less than fully liquid in their standard day-to-day operation. This occurs in almost all financial markets but is more severe in developing markets and specialist OC instruments.

- Crises liquidity risk - liquidity arising because of market crises e.g. times of crisis such as 1987 crash, the ERM crisis of 1992, the Russian crisis in August 1998, and the SE Asian crisis of 1998, we find the market had lost its normal level of liquidity. One can only liquidate positions by taking much larger losses.

1.5 Operational risk

This includes the risk of a mistake or breakdown in the trading, settlement or risk-management operation. These include

- trading errors

- not understanding the deal, deal mispricing

- parameter measurement errors

- back office oversight such as not exercising in the money options
• information systems failures

An important type of operational risk is management errors, neglect or incompetence which can be evidenced by

• unmonitored trading, fraud, rogue trading
• insufficient attention to developing and then testing risk management systems
• breakdown of customer relations
• regulatory and legal problems
• the insidious failure to quantify the risk appetite.

1.6 Legal risk

Legal risk is the risk of loss arising from uncertainty about the enforceability of contracts. Its includes risks from:

• Arguments over insufficient documentation
• Alleged breach of conditions
• Enforceability of contract provisions - regards netting, collateral or third-party guarantees in default of bankruptcy

Legal risk has been a particular issue with derivative contracts. Many banks found their swaps contracts with London Boroughs of Hammersmith and Fulham voided when the courts of England upheld the argument that the borough management did not have the legal authority to deal in swaps.
Chapter 2

Infamous risk management disasters

2.1 Wall street crash of 1987

When the portfolio insurance policy comprises a protective put position, no adjustment is required once the strategy is in place. However, when insurance is effected through equivalent dynamic hedging in index futures and risk free bills, it destabilises markets by supporting downward trends. This is because dynamic hedging involves selling index futures when stock prices fall. This causes the prices of index futures to fall below their theoretical cost-of-carry value. Then index arbitrageurs step in to close the gap between the futures and the underlying stock market by buying futures and selling stocks through a sell program trade.

2.2 Metallgesellschaft

Metallgesellschaft is a huge German industrial conglomerate dealing in energy products. From 1990 to 1993 they sold long-term forward contracts supplying oil products (the equivalent of 180 million barrels of oil) to their consumers. In order to hedge the position, they went long a like number of oil futures.

However, futures are short term contracts. As each future expired, they rolled it over to the next expiry. Of course, this exposed the company to basis risk.

The price of oil decreased. Thus they made a loss on the futures position and a profit on the OTC forwards. The problem is that losses on futures lead to margin calls whereas the profits on the forwards were still a long time from being realised. In fact, there were $1 billion margin calls on the futures positions.

The management of Metallgesellschaft were unwilling to continue to fund the position. They fired all the dealers, closed out all the futures positions, and allowed the counterparties
“Rogue” Trading Scandals Since 1987

<table>
<thead>
<tr>
<th>Entity</th>
<th>Year</th>
<th>Country</th>
<th>Loss (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumitomo Corporation</td>
<td>1996</td>
<td>Japan</td>
<td>$2,600</td>
</tr>
<tr>
<td>Orange County</td>
<td>1994</td>
<td>U.S.</td>
<td>$1,700</td>
</tr>
<tr>
<td>Metallgesellschaft AG</td>
<td>1993</td>
<td>Germany</td>
<td>$1,500</td>
</tr>
<tr>
<td>Barings PLC</td>
<td>1995</td>
<td>U.K.</td>
<td>$1,400</td>
</tr>
<tr>
<td>Daiwa Bank</td>
<td>1995</td>
<td>Japan</td>
<td>$1,100</td>
</tr>
<tr>
<td>Allied Irish Banks PLC</td>
<td>2002</td>
<td>Ireland</td>
<td>$750</td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td>1987</td>
<td>U.S.</td>
<td>$377</td>
</tr>
<tr>
<td>Kidder Peabody</td>
<td>1994</td>
<td>U.S.</td>
<td>$210</td>
</tr>
<tr>
<td>Codelco</td>
<td>1994</td>
<td>Chile</td>
<td>$170</td>
</tr>
<tr>
<td>Plains All-American Pipeline</td>
<td>1999</td>
<td>U.S.</td>
<td>$160</td>
</tr>
</tbody>
</table>

Source: Bloomberg.

![Figure 2.1: The price of oil (Dubai)](image)
to the forwards to walk away.
A loss of $1.3 billion was incurred. The share price fell from 64DM to 24DM.

2.3 Kidder Peabody

In April 1994, Kidder announced that losses at its government bond desk would lead to a $210 million charge against earnings, reversing what had been expected to be the firm’s largest quarterly profit in its 129-year history. The company disclosed that Joseph Jett, the head of the government bond desk, had manufactured $350 million in “phantom” trading profits, in what the Securities and Exchange Commission later called a “merciless” exploitation of the firm’s computer system. Kidder’s internal report on the incident concluded that the deception went unnoticed for two years due to “lax supervision”. Mr. Jett, who denied that his actions were unknown to his superiors, was found guilty of recordkeeping violations by an administrative judge.

2.4 Barings

This is probably the most famous banking disaster of all. Early in 1995, the futures desk of Baring’s in Singapore was controlled by Nic Leeson, a 28 year old trader.

He had long and unauthorised speculative futures positions on the Nikkei.

However, the Nikkei fell significantly. This was in no small part due to the Kobe earthquake of 17 January. He was faced with huge margin calls, which for a while he funded by taking option premia. However, eventually there was no more funds, and he absconded on 23 February 1995. The bank officially failed 26 February 1995, with a loss of $1 billion.

Leeson was sentenced to 6 and a half years in prison. The bank was sold for 1 pound to ING.

2.5 US S&L Industry

In the 1980s, Savings-and-Loan institutions were making long term loans in housing and property at a fixed rate, and taking short term deposits such as mortgage payments. In the face of market volatility and changes in the shape of the interest rate term structure, the US Congress made the mistake of deregulating the industry. This allows moral hazard.
One consequence of this deregulation was that savings-and-loan institutions has access to extensive credit through deposit insurance, while at the same time there was no real enforcement of limits on the riskiness of savings-and-loans investments. This encouraged some savings-and-loans owners to take on highly levered and risky portfolios of long-term loans, mortgage-backed securities, and other risky assets. Many went insolvent.

2.6 Orange County

The investment pool was invested in highly leveraged investments. The dealer Bob Citron insisted that MtM was irrelevant because a hold to maturity strategy was followed. This nonsense was believed for some time, but the eventual outcome was bankruptcy.

2.7 LTCM

Long Term Capital Management failed spectacularly in 1998. This was a very exclusive hedge fund whose partners included Myron Scholes, Robert Merton and John Meriwether. Their basic play, all over the world, was on credit spreads narrowing - thus, they were typically long credit risky bonds and short credit-safe bonds.

What were the reasons?
• Widening credit spreads and liquidity squeeze after the Russian default of 1998 - subsequent talk of a market in liquidity options by Scholes, amongst others.

• Very large leverage, which increased as the trouble increased, and as liquidity dried up. In other words, not enough long term capital.

• Excessive reliance on VaR without performing stress testing. They were caught out as a new paradigm was emerging: as VaR inputs are always historical, none of what was happening was an ‘input’ to the VaR model.

• Model risk - too many complex plays. Infatuation with sexy deals, which were retained as the portfolio was reduced. This reduced the liquidity even further.

LTCM was bailed out under rather suspicious circumstances by a consortium of creditors organised by Alan Greenspan of the Federal Reserve Bank. The exact conditions and motives for this are still not known - involvement by the legislators increases moral hazard going forward. It was argued that failure of LTCM could destabilise international capital markets. See [2], [3], [4].

2.8 Allied Irish Bank

More recently, Allied Irish Banks PLC disclosed in February that a rogue trader accumulated almost $700 million in losses over a five-year period. The losses, incurred at its U.S. foreign exchange operation Allfirst, caused the company to reduce its 2001 net income by over $260 million (about 38%). The Wall Street Journal claimed that Allfirst had a 25-year-old junior employee monitoring currency trading risk, an assertion that the bank denied. Bank officials believe that John Rusnak avoided the company’s internal checks by contracting out administration to banks that were complicit in the fraud.

2.9 National Australia Bank

The NAB options team made a loss in October 2003, right around the time they were expecting their performance bonuses, and rather than jeopardise them they tried to push the loss forward and wait for an opportunity to trade out of it - then decided to bet on the Australian dollar dropping. With the Australian dollar charging ahead in late 2003, they were left with a $180m loss within weeks.

One of the dealers was open with the press. His most serious claim was that the bank’s risk-management department had been signing off on the losses for months. “We were already over the limits for a number of months and the bank knew about it... It has been
going on and off for a year and consistently every day since October. It was signed off every day by the risk-management people.”

This is a direct contradiction of the bank’s claims that the $180 million loss was the result of unauthorised trades that had been hidden from senior management.

A former options trader wrote: “I can tell you that NAB have been doing dodgy trading stuff for much longer than a few months. The global FX options market has been waiting for them to blow up for years. No-one is surprised by this at all, except the fact that it took so long.”

The risk management situation at NAB seemed very poor. Chris Lewis was the senior KPMG auditor who had headed a due diligence team to advice whether the bank should buy Homeside in Florida; this advise was in the affirmative. As auditor he also signed the 2000 accounts and claimed they were “free of material mis-statement”, when in fact the bank was about to lose $3.6 billion from mortgage servicing risk at Homeside, which wasn’t even mentioned in the annual report.

Lewis was hired as the head of risk soon afterwards! It is clearly a conflict to have auditors who spend years convincing themselves everything is okay and then go and take over the reigns of internal audit at the same client, as there is a lack of fresh perspective. Not to mention that his competency was in question.

This piece was edited from [5].
Chapter 3

Value at Risk

We will focus for the remainder of this course on measuring market risks. It is only measurement of this type of risk, that has evolved to a state of near-finality, from a quantitative point of view. The standard ways of measuring market risks is via VaR or a relative thereof, stress testing, and sensitivities.

3.1 VAR: Basic Definitions

VaR was the first risk management tool developed that took into account portfolio and diversification effects.

VaR is the smallest loss experienced by a portfolio to a given high level of confidence, over a specified holding period, based on a distribution of value changes.

So, if the 10 day 95% VaR is R10m then over the next 10 days, the portfolio will

- with 95% probability, either make a profit, or a loss less than R10m.
- with 95% probability, will have a p&l of more than -R10m.
- with 5% probability, will make a loss of more than R10m.
- with 5% probability, will have a p&l of less than -R10m.

This does not mean that the ‘risk’ is R10m - the whole portfolio could vapourise, and the loss will presumably be more than R10m.

The term 10 days above is known as the ‘holding period’.

The term 95% is known as the ‘confidence level’.

Thus, a formal definition:
Figure 3.1: A typical p&l distribution with tail

Definition 1 The N-day VaR is x at the α confidence level means that, according to a distribution of value changes, with probability α, the total p&l over the next N days will be $-x$ or more.

Are the following consistent?

- 1 day 95% VaR of R10m
- 1 day 99% VaR of R5m

Certainly not. As our confidence increases the VaR number must increase. So, we might have

- 1 day 95% VaR of R10m
- 1 day 99% VaR of R20m

Are the following consistent?

- 1 day 95% VaR of R10m
- 1 day 99% VaR of R20m
- 10 day 99% VaR of R20m

Certainly not. More likely we would have:

- 10 day 99% VaR of R40m, say.
So, the following may very well be consistent:

- 1 day 95% VaR of R10m
- 1 day 99% VaR of R20m
- 10 day 99% VaR of R40m

Changing the holding period or the confidence level changes the reported VaR, but not the reality.

What are the factors driving the VaR of a position?

- size of positions - should be linear in size. But in extreme cases the size of the position affects the liquidity.
- direction of positions - not linear in direction eg. a call.
- riskiness of the positions - more speculative positions and/or more volatility should contribute to an increase in VaR.
- the combination of positions - correlation between positions.

'Distribution of value changes' - distribution needs to be determined, either explicitly or implicitly, and sampled. Current VaR possibilities:

- The Variance-Covariance approach, in other words the classic RiskMetrics© approach, or a variation thereof.
- Various historical simulation approaches - ‘history repeats itself’.
- Monte Carlo simulation.

3.2 Calculation of VaR

The choice of VaR method can be a function of the nature of the portfolio. For fixed income and equity, a variance-covariance approach is probably adequate. For plain vanilla options a simple enhancement of VCV such as the delta-gamma approach is often claimed to be suitable (the author disagrees), but if there are more exotic options, a more advanced full revaluation method is required such as historical or Monte Carlo.

The fundamental problem we are faced with is how to aggregate risks of various positions. They cannot just be added, because of possible interactions (correlations) between the risks.
In making the decision of which method to use, there is a tradeoff between computational time spent and the ‘accuracy’ of the model. It should be noted in this regard that traders will attempt to game the model if their limits or remuneration is a function of the VaR number and there are perceived or actual limitations to the VaR calculation. Thus (as already mentioned) limits on VaR need to be supplemented by limits on notionals, on the sensitivities, and by stress and scenario testing.

3.2.1 RiskMetrics©

In the following examples we compute VaR using standard deviations and correlations of financial returns, under the assumption that these returns are normally distributed. In most markets the statistical information is provided by RiskMetrics, but in South Africa, for example, the data is provided a day late. This is unsatisfactory for immediate risk management. Thus the institution should have their own databases of RiskMetrics type data.

The RiskMetrics assumption is that standardized returns are normally distributed given the value of this standard deviation. This is of course the fundamental Geometric Brownian Motion model.

α% VaR is derived via $z_{1-\alpha}$ times the standard deviation of returns, which is given by $\frac{\sigma}{\sqrt{250}}$, where σ is the annualised volatility of returns. Here z is the inverse of the cumulative normal distribution, so, for example, if $\alpha = 95\%$ then $z_{0.95} = -1.645$. Thus, a ‘bad’ outcome, for a portfolio which is long, would be a return of $\exp\left(z_{1-\alpha}\frac{\sigma}{\sqrt{250}}\right)$, and the VaR is

$$V\left(1 - \exp\left(z_{1-\alpha}\frac{\sigma}{\sqrt{250}}\right)\right) \tag{3.1}$$

If the portfolio is short, the bad outcome would be a return of $\exp\left(-z_{1-\alpha}\frac{\sigma}{\sqrt{250}}\right)$, and so the VaR is

$$V\left(\exp\left(-z_{1-\alpha}\frac{\sigma}{\sqrt{250}}\right) - 1\right) \tag{3.2}$$

We will call this approach the ‘RiskMetrics full precision’ method. For another possibility, note that by Taylor series $1 - e^x \approx -x \approx e^{-x} - 1$. Hence, for either a long or short position, VaR is approximately given by

$$-|V|z_{1-\alpha}\frac{\sigma}{\sqrt{250}} \tag{3.3}$$

We will call this the ‘standard RiskMetrics simplification’. Indeed, when reading [6] it is very problematic to know at any stage which method is being referred to. Unfortunately, the standard simplification method does not have much theoretical motivation: prices are not normally distributed under any model - it is returns that are typically modelled as being normal.
Example 1 You hold 2,000,000 shares of SAB. Currently the share is trading at 70.90 and the standard deviation of the return of SAB, measured historically, is 24.31%.

What is your 95% VaR over a 1-day horizon on 23-Jan-04?

Your exposure is equal to the market value of the position in ZAR. The market value of the position is $2,000,000 \times 70.90 = 141,800,000$.

The VaR of the position is $2,000,000 \times 70.90 \cdot \left(1 - \exp\left(\frac{z_{0.05} \times 24.31\%}{\sqrt{250}}\right)\right) = 3,540,616$.

Now suppose we have a portfolio. Here the covariance matrix Σ is measured in returns. Then $\sigma(R)$ is the standard deviation of the return of the portfolio, and is found as $\sigma(R) = \sqrt{w^T \Sigma w}$ as in classical portfolio theory. Here w_i are the proportional value weights, with $\sum_{i=1}^n w_i = 1$. So VaR can be measured directly. The assumption is again made that the return R is normally distributed, and the formulae for VaR are as before.

Example 2 You hold 2,000,000 shares of SAB and 500,000 shares of SOL. SOL is trading at 105.20 with a volatility of 32.10%. The correlation in returns is 4.14%. What is your 95% VaR over a 1-day horizon on 23-Jan-04?

This time, the MtM is $2,000,000 \times 70.90 + 500,000 \times 105.20 = 194,400,000$.

The daily standard deviation in returns are $\sigma_1 = 1.54\%$ and $\sigma_2 = 2.03\%$. The value weights are $w_1 = 72.94\%$ and $w_2 = 27.06\%$. The correlation in returns is $\rho = 4.14\%$. Thus, using the portfolio theory formula for the standard deviation of the returns of a portfolio,

$$\sigma(R) = \sqrt{w_1^2 \sigma_1^2 + 2w_1w_2\rho\sigma_1\sigma_2 + w_2^2 \sigma_2^2}$$

which is equal to 1.27% in this case. The VaR calculation proceeds as before, yielding a VaR of 4,015,381.

This is a good opportunity to introduce the concept of undiversified VaR. We calculate the VaR for each instrument on a stand-alone basis: $\text{VaR}_1 = 3,540,616$ and $\text{VaR}_2 = 1,727,495$, for a total undiversified VaR of 5,268,111. The fact that the VaR of the portfolio is actually 4,015,381 is an illustration of portfolio benefits.

RiskMetrics provides users with $1.645\sigma_1$, $1.645\sigma_2$, and ρ. One has to take care of the factor 1.645: whether to leave it in or divide it out, according to the required application. As has been indicated, this information is certainly provided in the South African environment, but it is a day late. It is not difficult to calculate these numbers oneself, using the prescribed methodology. The EWMA method with $\lambda = 0.94$ is the method prescribed by RiskMetrics for the volatility and correlation calculations.

If we make the standard RiskMetrics simplification, a neat simplifying trick is possible. Suppose $\sigma(R)$ and Σ are daily measures. Then

$$\text{VaR} = -|V|z_{1-a}\sigma(R) = -\sqrt{V^2}z_{1-a}\sqrt{w^T\Sigma w} = -z_{1-a}\sqrt{W^T\Sigma W}$$

(3.5)
where \(W_i = w_i V \) is the value of the \(i^{th} \) component.

Calculating VaR on a portfolio of cash flows usually involves more steps than the basic ones outlined in the examples above. Even before calculating VaR, you need to estimate to which risk factors a particular portfolio is exposed. The RiskMetrics methodology for doing this is to decompose financial instruments into their basic cash flow components. We use a simple example - a bond - to demonstrate how to compute VaR. See [6, §1.2.1].

Example 3 Suppose on 25-Jun-03 we are long a r150 bond. This expires 28-Feb-05, with a 12.00% coupon paid, with coupon dates 28-Feb and 31-Aug. How do we calculate VaR using the standard RiskMetrics simplification?

The first step is to map the cash flows onto standardised time vertices, which are 1m, 3m, 6m, 1y, 2y, 3y, 4y, 5y, 7y, 9y, 10y, 15y, 20y and 30y [6, §6.2]. We will suppose we have the volatilities and correlations of the return of the zero coupon bond for all of these time vertices.

The actual cash flows are converted to RiskMetrics cash flows by mapping (redistributing) them onto the RiskMetrics vertices. The purpose of the mapping is to standardize the cash flow intervals of the instrument such that we can use the volatilities and correlations of the prices of zero coupon bonds that are routinely computed for the given vertices in the RiskMetrics data sets. (It would be impossible to provide volatility and correlation estimates on every possible maturity so RiskMetrics provides a mapping methodology which distributes cash flows to a workable set of standard maturities).

The RiskMetrics methodology [6, Chapter 6] for mapping these cash flows is not completely trivial, but is completely consistent. We linearly interpolate the risk free rates at the nodes to risk free rates at the actual cash flow dates. Likewise we linearly interpolate the price volatilities at the nodes to price volatilities at the actual cash flow dates.

However, there is another method of calculating the price return volatility of the interpolated node. If \(A \) and \(C \) are known, and \(B \) is interpolated between them,

\[
\sigma_B = \sqrt{w^2\sigma_A^2 + 2w(1-w)\rho_{A,C}\sigma_A\sigma_C + (1-w)^2\sigma_C^2} \tag{3.6}
\]

Here the unknown is \(w \); the above can be reformulated as a quadratic, where \(w \in [0,1] \) is the smaller of the two roots of the quadratic \(\alpha x^2 + \beta x + \gamma \) with

\[
\begin{align*}
1\alpha &= \sigma_A^2 + \sigma_C^2 - 2\rho_{A,C}\sigma_A\sigma_C \\
\beta &= 2\rho_{A,C}\sigma_A\sigma_C - 2\sigma_C^2 \\
\gamma &= \sigma_C^2 - \sigma_B^2
\end{align*}
\]

\(^1 \)Don’t try to solve these quadratics in excel. Spurious answers are typical because these numbers are typically very small. Precision in vba or better is fine though.
Thus we have a portfolio of cash flows occurring at standardised vertices, for which we have
the price volatilities and correlations.

Using the formula $\text{VaR} = -z_{0.05}\sqrt{W^\prime \Sigma W}$ we get the VaR of the bond.

When the relationship between position value and market rates is nonlinear, then we cannot
estimate changes in value by multiplying ‘estimated changes in rates’ by ‘sensitivity of the
position to changing rates’; the latter is not constant (i.e., the definition of a nonlinear
position).

Recall that for equity option positions

\[\delta V \approx \frac{\partial V}{\partial S} \delta S + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} (\delta S)^2 \]

\[\approx \Delta \delta S + \frac{1}{2} \Gamma (\delta S)^2. \]

The RiskMetrics analytical method approximates the nonlinear relationship via a Taylor
series expansion. This approach assumes that the change in value of the instrument is
approximated by its delta (the first derivative of the option’s value with respect to the un-
derlying variable) and its gamma (the second derivative of the option’s value with respect
to the underlying price). In practice, other greeks such as vega (volatility), rho (interest
rate) and theta (time to maturity) can also be used to improve the accuracy of the approx-
imation. These methods calculate the risk for a single instrument purely as a function
of the current status of the instrument, in particular, its current value and sensitivities
(greeks).

We present two types of analytical methods for computing VaR - the delta and delta-gamma
approximation. In either case, the valuation is a monotone function of the underlying
variable, and so a level of confidence of that variable can be translated into the same level
of confidence for the price. Note the assumption that only the underlying variable can
change; other variables such as volatility are fixed.

Note from the diagram that if we are long the equity call option then the delta-gamma
method gives

\[\text{VaR}(V) = \Delta (S^- - S) - \frac{1}{2} \Gamma (S^- - S)^2 \]

and if we are short the equity option then

\[\text{VaR}(V) = \Delta (S^+ - S) + \frac{1}{2} \Gamma (S^+ - S)^2. \]

where S^- is that down value of the stock which corresponds to the confidence level required,
and S^+ is that up value of the stock which corresponds to the confidence level required.
The delta method would be given by the first order terms only.
Figure 3.2: The RiskMetrics method for cash flows (for example, coupon bonds)
Figure 3.3: A comparison of value, the delta approximation, and the delta-gamma approximation
The role of gamma here is quite intuitive - long gamma ensures additional profit under any market move, and so reduces the risk of the long position, conversely, it increases the risk of a short position.

Because of the sign differences in whether we are long or short, care needs to be taken with aggregation using this approach. Furthermore, this approach ignores the fact that there are other variables which impact the value of the position, such as the volatility in the case of an equity option, which in reality needs to be estimated and measured frequently. Since there is a correlation between price changes and changes in volatility, this missing factor can be significant.

Furthermore, for these methods to have any meaning at all, the price of the derivative must be a monotone function of the price of the underlying.\(^2\)

Example 4 Let us consider an OTC European call option on the ALSI40, expiry 17-Mar-05, strike 10,000, with the current valuation date being 15-Jan-04. The RiskMetrics method will focus on price risk exclusively and therefore ignore the risk associated with volatility (vega), interest rate (rho) and time decay (theta risk).

The spot of the ALSI40 is 10,048, and the dividend yield for the term of the option is estimated as 3.00%. The risk free rate for the term of the option is 8.40% and the SAFEX volatility for the term is 20.50%. As mentioned, we will assume that these values do not change, and we will use the SAFEX volatility without any considerations for the skew, and allowing for this blend of exchange traded models and otc models.

The value of the position is 1,185.41, the delta is 0.638973, and the gamma 0.000158.

\[\text{daily volatility } \sigma = 1.30\% \]

\[S^- = S e^{-1.645\sigma} = 9,835.98, \text{ and } S^+ = S e^{1.645\sigma} = 10,264.59. \]

Hence, with the delta method, if we are long then

\[\text{VaR}(V) = \Delta(S - S^-) = 135.47 \]

and if we are short then

\[\text{VaR}(V) = \Delta(S^+ - S) = 138.39 \]

and with the delta-gamma method, if we are long then

\[\text{VaR}(V) = \Delta(S - S^-) - \frac{1}{2} \Gamma(S - S^-)^2 = 131.91 \]

and if we are short then

\[\text{VaR}(V) = \Delta(S^+ - S) + \frac{1}{2} \Gamma(S^+ - S)^2 = 142.11. \]

\(^2\)For example, how would one use methods like this to do calculations involving barrier options, which have traded in the South African market?
The delta approximation is reasonably accurate when the spot does not change significantly, but less so in the more extreme cases. This is because the delta is a linear approximation of a non linear relationship between the value of the spot and the price of the option. We may be able to improve this approximation by including the gamma term, which accounts for nonlinear (i.e. squared returns) effects of changes in the spot.

Note that in this example, how incorporating gamma changes VaR relative to the delta-only approximation.

The main attraction of such a method is its simplicity, however, this is also the problem. This approach ignores other effects such as interest rate and volatility exposure, and fits a normal distribution to data which is known not to be normally distributed. As such it will underestimate the frequency of large moves and should underestimate the ‘true VaR’. This method is really only suitable for the simplest portfolios.

Despite the number of possibly tenuous assumptions, RiskMetrics performs satisfactorily well in backtesting. [7] claim that this is an artifact of the choice of the risk measure: firstly that the forecasting horizon is one day, and secondly that the significance level is 95%. The first factor allows even fairly crude volatility models to perform well, and secondly the fact that the significance level is not too high means that the fat tail effect is not too severe.

3.2.2 Historical simulation methods

Classical historical simulation

This method uses a window of data of size N. Typically $N \geq 250$ in order to conform with the requirement that VaR calculations use at least one year of input data. 400 is a nice choice (with many factors); so in these notes we will use 400 as N.

This is a full revaluation method. The revaluation of the entire portfolio is calculated for each of the last 400 days, as if the evolution in market variables that occurred on each of those days was to reoccur now. Thus,

$$\ln \frac{x^i}{x(t)} = \ln \frac{x(i)}{x(i-1)}$$ \hspace{1cm} (3.7)

or

$$x^i = x(t) \cdot \frac{x(i)}{x(i-1)}$$ \hspace{1cm} (3.8)

would be the experimental values for the variable x (an equity, index, risk free rate, implied at-the-money volatility, forex rate, ytm, ...). Here t denotes the current day, i one of the past business days, $t - 399 \leq i \leq t$, and $i - 1$ the business day before that.

We calculate V^i using a full revaluation methodology: this approach easily extends by
simple addition of values from positions to portfolios. Then, for our portfolio,

$$\text{VaR} = \text{Ave}[V'] - (1 - \alpha)\%[V'].$$

The advantage of such a method is its incredible simplicity. No distribution assumptions are made about returns, which typically will have much higher kurtosis than that displayed by the normal distribution, for example. All of these ‘true’ market features are built into the model automatically.

Ave$[V']$ is the average of the revaluations and as such could be the average level at which the market revalues. It is important to include this, rather than $V(t)$, for example, because the portfolio valuation could display significant drift, especially, for example, if it is a debt portfolio. Furthermore, it is important to use the market drift here - for which Ave$[V']$ is some type of estimate - rather than the ‘risk-neutral’ drift, as this mixing of distributions can lead to severe problems.

Example 5 Suppose on 22-Jan-04 we are long a r153 bond. We perform 400 historical simulations on the ytm. We then apply the bond pricing formula ie. full revaluation to the ytms so obtained to get the all in price of the bond on 28-Jan-04.

We get from full revaluation 400 bond prices: a minimum of 1.2316, a 5th percentile of 1.2387, an average of 1.2440, a 95th percentile of 1.2497, and a maximum of 1.2600. Thus if we are long the bond then the 95% VaR is 0.0054 per unit, and if we are short then the 95% VaR is 0.0057 per unit.

We could also simply determine the appropriate percentile ytm and calculate the AIP there, to get the same results. However, this does not help as soon as we start aggregation.

Example 6 Let us consider an OTC European call option on the ALSI40; expiry 20-Mar-03, strike 12000, with the current valuation date being 19-Jun-02. We perform 400 historical simulations on the spot, on the risk free rate, and on the atm volatility, valuing on 20-Jun-02. We stress the dividend yield in the reverse direction of the spot stress in such a manner that the monetary value of the dividends is constant.

We get from full revaluation 400 option prices: a minimum of 294.59, a 5th percentile of 400.20, an average of 468.22, a 95th percentile of 551.17, and a maximum of 754.32. Thus if we are long the option then the 95% VaR is 68.02, and if we are short then the 95% VaR is 82.95.

Historical simulation with volatility adjusting

Again, let us use a window of length 400.
Figure 3.4: The bucketed P&L’s in 400 experiments for historical V@R
This method was first proposed in [8], and has become quite prevalent academically. It has not been widely implemented in the industry, although is starting to gain some prominence in South Africa. One of the main criticisms of the historical method is that the returns of the past can be inappropriate for current market conditions. For example, if our window of N days is an almost entirely quiet period, and there is currently a very sudden spike in volatility, the historical method would still be using the 'quiet data', and the new volatility regime would only be factored in gradually, one day at a time.

The basic idea of the volatility adjusting is that we should only compare standardised variables, which have been standardised by dividing by their volatility. Thus

$$\frac{1}{\sigma(t)} \ln \frac{x^i}{x(t)} = \frac{1}{\sigma(i-1)} \ln \frac{x(i)}{x(i-1)}$$

or

$$x^i = x(t) \cdot \left(\frac{x(i)}{x(i-1)} \right)^{\frac{\sigma(t)}{\sigma(i-1)}}$$

would be the experimental values for the factor x, indexed by the value i where $t - 399 \leq i \leq t$. The volatility is historical volatility, unless implied volatility is available, in which case it is implied volatility.

An appropriate method for implied volatility updating is required. If exactly the same strategy is to be used one will need to measure and adjust by the volatility of volatility. But mathematically one cannot use the EWMA scheme, for example, as implied volatility does not follow a (Geometric Brownian Motion) random walk, but is mean reverting. We prefer just to use straight historical for implied volatility. Thus, for implied volatility σ_I:

$$\sigma^i_I = \sigma_I(t) \frac{\sigma_I(i)}{\sigma_I(i-1)}$$

and we have three fundamental updating equations:

$$x^i = x(t) \cdot \left(\frac{x(i)}{x(i-1)} \right)^{\frac{\sigma_I(t)}{\sigma_I(i-1)}} \quad (3.9)$$

$$x^i = x(t) \cdot \left(\frac{x(i)}{x(i-1)} \right)^{\frac{\sigma_I(t)}{\sigma_I(i-1)}} \quad (3.10)$$

$$\sigma^i_I = \sigma_I(t) \frac{\sigma_I(i)}{\sigma_I(i-1)} \quad (3.11)$$

where

- (3.9) is used where the variable x is available and implied volatility is not, so a historical volatility is calculated;
Example 7 Let us consider the same OTC European call option on the ALSI40 as before: expiry 20-Mar-03, strike 12,000, with the current valuation date being 19-Jun-02. We perform 400 historical simulations with volatility adjusting on the spot, on the risk free rate, and simple historical simulations on the atm volatility, valuing on 20-Jun-02. We stress the dividend yield as previously. We get from full revaluation 400 option prices: a minimum of 316.66, a 5th percentile of 406.19, an average of 466.72, a 95th percentile of 540.30, and a maximum of 717.58. Thus if we are long the option then the 95\% VaR is 60.53, and if we are short then the 95\% VaR is 73.59.

In a personal communication, Alan White says “I always liked that [the Hull-White] scheme. My view is that the various approaches form a continuum in which different methods are used to characterize the distributions in question. The parametric approach tries to match
moments. It can evolve quickly but fails to capture many of the details of the distributions. The historical simulation assumes the sample distribution is the population distribution. This captures the details of the distribution but evolves too slowly if the distribution is not stationary. We attempted to marry these two approaches.”

3.2.3 Monte Carlo method

The second alternative offered by RiskMetrics, structured Monte Carlo simulation, involves creating a large number of possible rate scenarios and performing full revaluation of the portfolio under each of these scenarios. VaR is then defined as the appropriate percentile of the distribution of value changes. Due to the required revaluations, this approach is computationally more intensive than the first approach. The two RiskMetrics methods - analytic and Monte Carlo - differ not in terms of how market movements are forecast (since both use the RiskMetrics volatility and correlation estimates) but in how the value of portfolios changes as a result of market movements. The analytical approach approximates changes in value, while the structured Monte Carlo approach fully revalues portfolios under various scenarios.

The RiskMetrics Monte Carlo methodology consists of three major steps:

- Scenario generation, using the volatility and correlation estimates for the underlying assets in our portfolio, we produce a large number of future price scenarios in accordance with the lognormal models described previously.
- For each scenario, we compute a portfolio value.
- We report the results of the simulation, either as a portfolio distribution or as a particular risk measure.

Other Monte Carlo methods may vary the first step by creating returns by (possibly quite involved) modelled distributions, using pseudo random numbers to draw a sample from the distribution. The next two steps are as above. The calculation of VaR then proceeds as for the historical simulation method. Indeed, this is very similar to the historical method except for the manner in which experiments are created.

The advances in RiskMetrics Monte Carlo is that one overcomes the pathologies involved with approximations like the delta-gamma method.

The advances in other Monte Carlo methods over RiskMetrics Monte Carlo are in the creation of the distributions. However, to create experiments using a Monte Carlo method is fraught with dangers. Each market variable has to be modelled according to an estimated distribution and the relationships between distributions (such as correlation or less obvious non-linear relationships, for which copulas are becoming prominent). Using the Monte
Carlo approach means one is committed to the use of such distributions and the estimations one makes. These distributions can become inappropriate; possibly in an insidious manner. To build and ‘keep current’ a Monte Carlo risk management system requires continual re-estimation, a good reserve of analytic and statistical skills, and non-automatic decisions.

Why and when using Monte Carlo

Monte Carlo is a very powerful tool for estimating prices and exposures and can handle the most exotic positions. It can easily overcome the problems associated with normal based (VCV) approaches. Monte Carlo is appropriate for path-dependent options with time varying parameters. In fact, for some derivatives the only appropriate way to originally price the instrument - let alone calculate risk numbers - is via Monte Carlo.

Results from Monte Carlo obviously depend critically on the distribution models from which random numbers are sampled. The use of Monte Carlo therefore exposes us to severe model risk, which is the risk of obtaining incorrect results due to the choice of inappropriate pricing models.

What models are used? For equity positions the assumption of geometric Brownian motion is typical and the generation process will take the form

\[
dS = (r - q)S \, dt + \sigma S \sqrt{dt} \, Z
\]

From this it follows that

\[
S(T) = S(t) \exp \left[\left(r - q - \frac{1}{2} \sigma^2 \right) (T - t) + \sigma \sqrt{T - t} Z \right]
\]

By contrast an appropriate Monte Carlo method for fixed-income instruments is a much more difficult problem. This is intimately connected to the choice of pricing model, for example, Cox-Ingersoll-Ross [9], Longstaff-Schwartz [10], or Heath-Jarrow-Morton [11]. However, it is well known that in the South African market there is a tremendous paucity of data to actually calibrate these models in any meaningful way - see [12].

Example 8 Suppose we hold an r153 bond on 22-Jan-04. What is the VaR?

The close was 9.10%. We estimate the annual volatility of the yield to be 12.25%. Using excel/vba, we first create uniformly distributed random numbers U then transform them into normally distributed random numbers Z by using the inverse of the cumulative normal distribution.\(^3\) We then determine our new yields:

\[
y(T + 1) = y(T) \exp \left(\frac{\sigma}{\sqrt{250}} Z \right).
\]

We then apply the bond pricing formula for 28-Jan-04 to get the new all in prices. We then work out the VaR, by examining averages and percentiles, in the usual way. The 95% VaR is about 6,417 (long) and 6,473 (short) per unit.

\(^3\)In excel this is given by the function norminv.
Choleski decomposition

Suppose we are interested in a portfolio with more than one security, or more generally, more than one source of random normal noise. Let us start with the case where we have two such random variables. We cannot simply take two random number generators and paste them together, unless the underlyings are independent. However, typically there will be a measured or estimated correlation between the two random variables, and this needs to appear in the random numbers generated.

If the two stocks were uncorrelated, we could have

\[r_1 = a_1 Z_1, \quad r_2 = a_2 Z_2 \]

With the correlation, we want the \(Z_1 \) to influence \(r_2 \). Thus the appropriate setup is

\[
\begin{bmatrix}
 r_1 \\
 r_2
\end{bmatrix} =
\begin{bmatrix}
 a_{1,1} & 0 \\
 a_{2,1} & a_{2,2}
\end{bmatrix}
\begin{bmatrix}
 Z_1 \\
 Z_2
\end{bmatrix}.
\] (3.14)

or \(r = AZ \). Thus

\[r r' = AZZ' A' \] (3.15)

and so

\[\Sigma = AA' \] (3.16)

by taking expectations. Thus, \(A \) is found as a type of lower-triangular square root matrix of the known variance-covariance matrix \(\Sigma \). The most common solution (it is not unique) is known as the Choleski decomposition. All that has been said is valid for any number of dimensions, and simple algorithms for calculating the Choleski decomposition are available [13, Algorithm 6.6].

In the case of two variables, it is convenient to explicitly note the solution. Here

\[
\Sigma =
\begin{bmatrix}
 \sigma_1^2 & \sigma_1 \sigma_2 \rho \\
 \sigma_1 \sigma_2 \rho & \sigma_2^2
\end{bmatrix}
\] (3.17)

and

\[
A = 4 \begin{bmatrix}
 \sigma_1 \\
 \sigma_2 \rho \\
 \sigma_2 \sqrt{1 - \rho^2}
\end{bmatrix}
\] (3.18)

A theoretical requirement here is that the matrix \(\Sigma \) be positive semi-definite. The covariance matrix is in theory positive definite as long as the assets are truly different i.e. we do not have the situation that one is a linear combination of the others. If there are more assets in the matrix than number of historical data points the matrix will be rank-deficient.

Note the error in [14, Chapter 5 §2.2].
and so only positive semi-definite. Moreover, in practice because all parameters are estimated, and in a large matrix there will be some assets which are nearly linear combinations others, and also taking into account numerical roundoff, the matrix may not be positive semi-definite at all [14, §2.3.4]. However, this problem has recently been completely solved [15], by mathematically finding the (semi-definite) correlation matrix which is closest (in an appropriate norm) to a given matrix, in particular, to our mis-estimated matrix.

Example 9 We reconsider the example in Example 2. You hold 2,000,000 shares of SAB and 500000 shares of SOL. SOL is trading at 105.20 with a volatility of 32.10%. The correlation in returns is 4.14%. What is your 95% VaR over a 1-day horizon on 23-Jan-04?

Using excel/vba, we first extract pairs of uniformly distributed random numbers U_1, U_2, then transform them into pairs of normally distributed random numbers Z_1, Z_2 by using the inverse of the cumulative normal distribution. We then apply the Choleski decomposition:

$$
 r_1 = \frac{\sigma_1}{\sqrt{250}} Z_1, \quad r_2 = \frac{\sigma_2}{\sqrt{250}} (\rho Z_1 + \sqrt{1 - \rho^2} Z_2)
$$

(3.19)

and determine our new prices: $S_1(T + 1) = S_1(T) \exp(r_1)$, $S_2(T + 1) = S_2(T) \exp(r_2)$. We then work out the portfolio MfF's, and then work out the VaR, by examining averages and percentiles, in the usual way. The 95% VaRs are 3,979,192 and 4,058,332.

A possible example of the first few calculations is shown. The calculation would typically use 10,000 calculations or more.

<table>
<thead>
<tr>
<th>Rnd(1)</th>
<th>Rnd(2)</th>
<th>Cumnorm inverse(1)</th>
<th>Cumnorm inverse(2)</th>
<th>Correlated return(1)</th>
<th>Correlated return(2)</th>
<th>MfF(1)</th>
<th>MfF(2)</th>
<th>New portfolio MtM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.705540</td>
<td>0.53342402</td>
<td>0.540423541</td>
<td>0.003060</td>
<td>0.003060</td>
<td>0.002155</td>
<td>71.49140663</td>
<td>105.4269321</td>
<td>195.696457</td>
</tr>
<tr>
<td>0.673519</td>
<td>0.289562464</td>
<td>0.200662317</td>
<td>0.554666</td>
<td>0.003060</td>
<td>0.01108</td>
<td>71.11904656</td>
<td>104.0405652</td>
<td>194.286373</td>
</tr>
<tr>
<td>0.301948</td>
<td>0.7747401</td>
<td>0.518806017</td>
<td>0.754519</td>
<td>-0.00798</td>
<td>0.01487</td>
<td>70.34678362</td>
<td>106.775963</td>
<td>194.061564</td>
</tr>
<tr>
<td>0.014018</td>
<td>0.760723991</td>
<td>2.193723202</td>
<td>0.708322</td>
<td>0.03977</td>
<td>0.012529</td>
<td>68.54581573</td>
<td>106.5263367</td>
<td>190.354401</td>
</tr>
</tbody>
</table>

Example 10 Consider on 22-Jan-04 a portfolio which consists of long 110,000,000 r153 and short 175,000,000 tk01. The closes of these instruments are 9.10% and 9.41% respectively, with AIP for 27-Jan-04 being 1.2434199 and 1.0524115 respectively, and delta -5.464 and -3.433 respectively. Thus this is an almost delta neutral portfolio; the risks associated should be quite small.

We have $\sigma_1 = 12.25\%$, $\sigma_2 = 15.18\%$, and $\rho = 91.25\%$.

Using excel/vba, we first extract pairs of uniformly distributed random numbers U_1, U_2, then transform them into pairs of normally distributed random numbers Z_1, Z_2 by using the
inverse of the cumulative normal distribution. We then apply the Choleski decomposition:

\[
\begin{align*}
r_1 &= \frac{\sigma_1}{\sqrt{250}} Z_1, \\
r_2 &= \frac{\sigma_2}{\sqrt{250}} (\rho Z_1 + \sqrt{1 - \rho^2} Z_2)
\end{align*}
\] (3.20)

and determine our new yields: \(y_1(T + 1) = y_1(T) \exp(r_1) \), \(y_2(T + 1) = y_2(T) \exp(r_2) \). We then apply the bond pricing formula to get the new all in prices. We then work out the VaR, by examining averages and percentiles, in the usual way. The 95% VaRs are 296,964 and 291,291.

Another very effective and computationally very efficient way around this problem is to reduce the dimensions of the problem by using principal component analysis or factor analysis. Principal component analysis is a topic on its own, and has become very prevalent in financial quantitative analysis. See [14, Box 3.3].

3.2.4 A comparative summary of the methods

Here we summarise the essential features of the competing methods.

<table>
<thead>
<tr>
<th></th>
<th>RiskMetrics</th>
<th>Historical</th>
<th>Hull-White</th>
<th>Monte Carlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revaluation</td>
<td>analytic</td>
<td>full</td>
<td>full</td>
<td>full</td>
</tr>
<tr>
<td>Distributions</td>
<td>normal</td>
<td>actual</td>
<td>quasi-actual</td>
<td>created</td>
</tr>
<tr>
<td>Tails</td>
<td>thin</td>
<td>actual</td>
<td>quasi-actual</td>
<td>created</td>
</tr>
<tr>
<td>Intellectual effort</td>
<td>moderate</td>
<td>very low</td>
<td>low</td>
<td>very high</td>
</tr>
<tr>
<td>Model risk</td>
<td>enormous</td>
<td>moderate</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Computation time</td>
<td>low</td>
<td>moderate</td>
<td>moderate</td>
<td>high</td>
</tr>
<tr>
<td>Communicability</td>
<td>easy</td>
<td>easy</td>
<td>moderate</td>
<td>very difficult</td>
</tr>
</tbody>
</table>

In the same correspondence as previously, Alan White says “In my experience in North America the historical simulation approach has won the war. Some institutions use the parametric approach (particularly those with large portfolios of exotics) but they appear to be in the minority. I don’t know anyone who uses the approach we suggested despite its advantages. Perhaps the perception is that the improvement in the measures does not compensate for the cost of implementing the procedure. Just maintaining the historical data base seems to tax the capabilities of many institutions.

As for software vendors [implementing the Hull-White method], my sense is that this market segment (VaR systems) is now a mature market with thin profits for the software companies. It seems unlikely to me that they will be implementing many changes in this environment.”
Chapter 4

Stress testing and Sensitivities

4.1 VaR can be an inadequate measure of risk

VaR is generally used as a quantitative measure for how severe losses could be. Yet, significant catastrophes have been evident, even in instances where state-of-the-art VaR computations have been deployed. For example, VaR calculations were conducted prior to the implosion in August 1998 by Long-Term Capital Management (LTCM). What went wrong with LTCM risk-forecasts? They may have placed too much faith on their exquisitely tuned computer models. Sources say LTCMs worst-case scenario was only about 60% as bad as the one that actually occurred. In other words, stress testing was inadequate. In fact, it seems that stress-testing was almost non-existent at LTCM; most risk-measurement was done using VaR methods. The problem has, at its basis, LTCMs inability to accurately measure, control and manage extreme risk. It is extreme risk that LTCMs VaR calculations could not accurately estimate, and it is extreme risk that needs to be measured in stress testing.

Stress tests can provide useful information about a firm’s risk exposure that VaR methods can easily miss, particularly if VaR models focus on “normal” market risks rather than the risks associated with rare or extreme events. Such information can be fed into strategic planning, capital allocation, hedging, and other major decisions.

Stress testing is essential for examining the vulnerability of the institution to unusual events that plausibly could happen (but have not previously happened, so are not ‘inputs’ to our VaR model) or happen so rarely that VaR ‘ignores’ them because they are in the tails. Thus, market crashes are typically washed into the tails, so VaR does not alert us to their full impact. Thus stress testing is a necessary safeguard again possible failures in the VaR methodology.

Scenarios should take into account the effects that large market moves will have on liquidity. Usually a VaR system will assume perfect liquidity or at least that the existing liquidity
regime will be maintained.
The results of scenario analysis should be used to identify vulnerabilities that the institution is exposed to. These should be actioned by management, retaining those risks that they see as tolerable. (It is impossible to remove all risks because by doing so the rewards will also disappear.)

4.2 Stress Testing

There are various types of stress analysis [16], [17]:

- The first type uses scenarios from recent history, such as the 1987 equity crash. We can ask what the impact would be of some historical market event, such as a market crash, repeating itself.

- Institution-specific scenario analysis. Identify scenarios based on the institution’s portfolio, businesses, and structural risks. This seeks to identify the vulnerabilities and the worst-case loss events specific to the firm.

- Extreme standard deviation scenarios. Identify extreme moves and construct the scenarios in which such losses can occur. For example, what will be the losses in a 5 - 10 standard deviation event?

- Predefined or set-piece scenarios that have proven to be useful in practice. The risk manager should also be able to create plausible scenarios.

- Mechanical-search stress tests, also called sensitivity stress tests [17], [18]. This can be performed fairly mechanically. Key variables are moved one at a time and the portfolio is revalued under those moves. What results is a vector or matrix of portfolio revaluations under the market moves.

Any market modelling required for these purposes is usually fairly routine. For example, when stressing the ‘price level’ of the equity market, individual stocks may be stressed in a manner consistent with the Capital Asset Pricing Model [19] ie.

\[
\frac{dS}{S} = \alpha + \beta \frac{dI}{I}
\]

where \(S \) denotes the stock and \(I \) the index, and the CAPM parameters \(\alpha \) and \(\beta \) are of the stock w.r.t. to index. This ensures that the volatility dispersion within the portfolio is modelled. Furthermore, \(\alpha \) can be eliminated from the above equation because it is usually insignificant when compared with the size of stress that we are interested in.
• Quantitative evaluation of distributions of tail events and extreme value theory. Based on observed historical market events, quantify the impact of a series of tail events to evaluate the severity of the worst case losses. This approach also evaluates the distribution of tail events to determine if there are any patterns that should be used for scenario analysis.

4.3 Other risk measures and their uses

• Stress testing.

• Greeks or sensitivities - the favourite of dealers, because it is on this basis that they will manage the book.

 – aggregate delta of an equity option portfolio,
 – aggregate rho of a fixed income portfolio,
 – gamma or convexity.
key rate duration - shifting pieces of the yield curve, or even other term structures such as volatility. This is therefore a type of scenario analysis.

- Cash ladders - asset liability management.
- Stop-loss limits.

Many of these measures are much 'lower-level' than VaR. They provide information only about a limited subset of a portfolio's risk, and illuminate the specific contributors to risk. It gives the directional impact of each risk - 'the feel of the risks'.

This will help a risk manager understand where the risks come from and what can be done to lower it (if necessary). VaR can be (although it does not have to be) a type of 'black box'. In this regard, it should be noted that there is a definite distinction between risk measurement and risk management. Risk measurement is a natural consequence of the ability to price instruments and manage the data associated with that pricing, and is best performed with a blend of analytic and IT skills. Risk management is the process of considering the business reasons and intuitions behind the risk measures and then acting upon them. Here business skills and plain obstinacy are most appropriate.

All risk measures can be equally valid and can be aimed at different audiences, for example:

- Greeks are for the dealer,
- stress and VaR for management,
- VaR (supplemented by stress testing) are for the regulator.

The uses of these risk measures can be inferred in a logical manner in terms of the limit hierarchy that is placed on the business.

- Individual dealers, following explicit strategies, should have their limits set via the Greeks,
- stress and VaR limits should be placed from the desk level, up to the level of the entire institution,
- the stress and VaR figures for the entire institution are provided to the regulator.

4.4 Calculation of sensitivities

Where analytic formulae hold true these can be used for calculation of sensitivities. For the most part however, analytic Greek formulae do not hold true. Hence the sensitivities should
be calculated empirically, using a numeric technique which will be outlined below, using a “twitch”. Typically we take a twitch of $\epsilon = 0.0001$. These numeric Greeks are superior to analytic Greeks because they take into account skew effects as well as the reverse dividend yield effect.\(^1\) Such greeks are often called ‘shadow’ greeks e.g. shadow gamma [20].

- Delta, $\Delta = \frac{\partial V}{\partial S}$, where S denotes the price of the underlying. Numerically, Delta is found using central differences as
 $$\Delta = \frac{V((1 + \epsilon)S) - V((1 - \epsilon)S)}{2\epsilon S} \quad (4.1)$$
 Δ gives the change in value of V for a one point (rand or index point) change in S. Because Δ cannot be aggregated across different underlyings, it is not as useful as ΔS. From the above, $\epsilon \Delta S$ is to first order the profit on V for a change of ϵS to the value of S. Thus $\pm 0.01 \Delta S$ is the profit on a 1% move up/down in the underlying. ΔS is the rand equivalent delta, and can be aggregated across different underlyings.

- Gamma, $\Gamma = \frac{\partial^2 V}{\partial S^2}$. Numerically, Γ is found as
 $$\Gamma = \frac{V((1 + \epsilon)S) - 2V(S) + V((1 - \epsilon)S)}{\epsilon^2 S^2} \quad (4.2)$$
 $\epsilon \Gamma S$ is the approximate change in Δ requirements for a change of ϵS to the value of S i.e. the number of additional S needed for rebalancing the hedge.\(^2\)
 ΓS^2 is used for measuring the notional cost of rebalancing the hedge, and is the rand equivalent Gamma. $\pm 0.01 \Gamma S^2$ is the notional cost of rebalancing the hedge under a 1% move up/down in S.

- Surface Vega is defined to be $\frac{\partial V}{\partial \sigma_S}$ i.e. the sensitivity to changes in the level of the SAFEX atm term structure. Surface Vega is found numerically using central differences as
 $$\mathcal{V}_S = \frac{V(\sigma_S + \epsilon) - V(\sigma_S - \epsilon)}{2\epsilon} \quad (4.3)$$
 where σ_S denotes the entire SAFEX atm volatility term structure of the index; the shift of ϵ is made parallel to the entire term structure.
 $\pm 0.01 \mathcal{V}_S$ gives the profit on a 100bp move up/down in the SAFEX atm term structure.

\(^1\)Namely, that the monetary value of dividends is not dependent on moderate stresses to spot levels, with the appropriate reverse stress to the dividend yield modelled accordingly.

\(^2\)Since, by Taylor series, $\Delta(S + \epsilon S) = \Delta(S) + \Gamma \epsilon S + \cdots$.
- Theta, $\Theta = \frac{\partial V}{\partial t}$, is an annual measure of the time decay of V. We calculate

$$\Theta = \frac{V(t + \epsilon) - V(t)}{\epsilon} \cdot 365 \quad (4.4)$$

Whether we now multiply by $\frac{1}{250}$ to get the time value gain on V per trading day, or by $\frac{nbd(t) - t}{365}$ to get the time value between date t and the next business day, or simply by $\frac{1}{365}$, is largely a matter of choice.

- Rho, $\rho = \frac{\partial V}{\partial r}$, where r denotes the input risk free rate NACC. These are found from a standard NACC yield curve. In the case of multiple input risk free rates, ρ is the sensitivity to a simultaneous (parallel) shift in the entire term structure. ρ is found numerically using central differences as

$$\rho = \frac{V(r + \epsilon) - V(r - \epsilon)}{2\epsilon} \quad (4.5)$$

$\pm 0.01 \rho$ gives the profit on a 100bp NACC parallel move up/down in the term structure.
Chapter 5

Backtesting VaR

5.1 The rationale of backtesting

If the relevant regulatory body gives its approval, a bank can use its own internal VaR calculation as a basis for capital adequacy, rather than another more punitive measure that must be used by banks that do not have such approval.

The internal models approach is the most desirable method for determining capital adequacy. The quantification of market risk for capital adequacy is determined by the bank’s own VaR model.

First determine the 10 trading day (or two week) VaR at the 99% confidence level, call it \(\text{VaR}^{10} \). The Market Risk Charge at time \(t \) is

\[
\max \left\{ \text{VaR}_{t-1}^{10}, k \cdot \text{Ave} \left(\text{VaR}_{t-1}^{10}, \text{VaR}_{t-2}^{10}, \ldots, \text{VaR}_{t-60}^{10} \right) \right\}
\]

(5.1)

where \(k \) can be as low as 3 but may be increased to as much as 4 if backtesting proves unsatisfactory i.e. backtesting reveals that a bank is overly optimistic in the estimates of VaR. This provision is clearly to prevent gaming by the bank - under-reporting VaR numbers (in the expectation that they will not backtest) in order to lower capital requirements.

The factor \(k \approx 3 \) comes from thin air - the so-called hysteria factor. Legend has it that it arose as a compromise between the US regulatory authorities (who wanted \(k = 1 \)) and the German authorities (who wanted \(k = 5 \)) [14].

In principle the correct approach would be to measure the VaR at the holding period and confidence level that maps to the preferred probability of institutional survival (eg. 1 year and 99.75% for an A rated bank) and then use \(k = 1 \) [14].

The 10-day VaR is actually calculated using a 1-day VaR and the square root of time rule. In this case the Market Risk Charge at time \(t \) is

\[
\sqrt{10} \max \left\{ \text{VaR}_{t-1}^{1}, k \cdot \text{Ave} \left(\text{VaR}_{t-1}^{1}, \text{VaR}_{t-2}^{1}, \ldots, \text{VaR}_{t-60}^{1} \right) \right\}
\]

(5.2)
where the VaR numbers are now with daily horizon.

The actual regulatory capital requirement will also include a Specific Risk Charge for issuer-specific risks, such as credit risks. In Basle II operational risk charges are included.

In an interesting study done in 1996, at the time these proposals were being made into regulations, [21] found that the internal models approach was the only method that was consistently sufficient to safeguard the capital of banks in times of stress. They also found that a method they call net capital at risk, which can be viewed as a misapplication of a VaR-type approach, was by far the worst of the several methods examined. This would be, for example, a pure net delta approach to VaR - as would occur if a South African bank was to use a delta equivalent position in the TOP40 for their entire set of domestic equity-based positions. Thus, they conclude that the internal models approach only makes sense with stringent quality control.

5.2 The Technical Details

VaR models are only useful to the extent that they can be verified. This is the purpose of backtesting, which applies statistical tests to see if the number of exceptions that have occurred is consistent with the number of exceptions predicted by the model.

An exception is a day on which the loss amount was greater than the VaR amount. If we are working with a 95% confidence, and if the model is accurate, then on average we should have an exception on 1 day out of 20.

Even though Capital Adequacy is based on 99% VaR with a 10-day holding period, backtesting is performed on VaR with a daily horizon, and can be performed at other confidence levels. There is no theoretical problem with this, and the advantage of using daily VaR is that a larger sample is available and so statistical tests have greater power. Of course the horizon cannot be less than the frequency of p&l reporting, and this is almost always daily.

Backtesting is a logical manner of providing suitable incentives for use of internal models. The question arises as to whether to use actual or theoretical p&l’s. It is often argued that VaR measures cannot be compared against actual trading outcomes, since the actual outcomes are contaminated by changes in portfolio composition, and more specifically intraday trading. This problem becomes more severe the longer the holding period, and so the backtesting framework involves one-day VaR.

To the extent that backtesting is purely an exercise in statistics, it is clear that the theoretical p&l’s should be used for an uncontaminated test. However, what the regulator is really interested in is the solvency of the institution in reality, not in a theoretical world! Thus there are arguments for both approaches, and in fact backtesting has been a requirement for approved VaR models since the beginning of 1999, on both an actual (traded) and
theoretical (hypothetical) basis. This is to ensure that the model is continually evaluated for reasonability. Backtesting for approved models occurs on a quarterly basis with one year of historical data (250 trading days) as input.

Extensive backtesting guidelines are given in the January 1997 Basle accord [22]. Because of the statistical limitations of backtesting the Basle committee introduced a three zone approach:

- Green zone: the test does not raise any concerns about the model. The test results are consistent with an accurate model.

- Yellow zone: the test raises concerns about the model, but the evidence is not conclusive. The test results could be consistent with either an accurate or inaccurate model.

The capital adequacy factor (k-factor) will be increased by the regulator. The placement in the yellow zone (closer to green or red) should guide the increase in a firm's capital requirement. The following recommendations are made [22]:

<table>
<thead>
<tr>
<th>Number of exceptions</th>
<th>Zone</th>
<th>Scaling factor (k-factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>Green</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Yellow</td>
<td>3.4</td>
</tr>
<tr>
<td>6</td>
<td>Yellow</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>Yellow</td>
<td>3.65</td>
</tr>
<tr>
<td>8</td>
<td>Yellow</td>
<td>3.75</td>
</tr>
<tr>
<td>9</td>
<td>Yellow</td>
<td>3.85</td>
</tr>
<tr>
<td>10+</td>
<td>Red</td>
<td>4 (model withdrawn)</td>
</tr>
</tbody>
</table>

The basic idea is that the increase in the k-value should be at least sufficient to return the model to the 99% standard in terms of capital requirements. Nevertheless, some game theory is possible here, at least in principle. To obtain exact answers in this regard requires additional distributional assumptions which may not hold in reality.

This is the most difficult case, but the burden of proof in these situations will be on the institution to demonstrate that their model is sound. This is achieved through decomposition of exceptions, documentation of each exception, and provision of backtesting results at other confidence intervals, for example.

- Red zone: the test almost certainly raises concerns about the model. The test results are almost certainly inconsistent with an accurate model. The k-factor is increased to 4, and approval for the existing model is almost certainly withdrawn.

1One of the reasons that [22] give for why this can occur is because the volatility and correlation estimates of the model are old, and have been outdated by a major market regime shift, thus causing a
Because we are taking a sample from a distribution, the sample is subject to error. Based on the sample, we test if the model is valid using standard statistical hypothesis testing. Recall that there are two types of errors associated with statistical tests:

- Type I error: rejecting a valid model,
- Type II error: accepting an invalid model.

As is well known in statistics, it is impossible to control the size of these errors simultaneously.

For each day in history we determine whether or not an exception occurred, so we have a vector p_1, p_2, \ldots, p_N of 0-1 Boolean variables, where the vector starts on the first day on which backtesting was performed.

Under the null hypothesis, if the model is valid, the total $\sum_{i=1}^{N} p_i$ is distributed according to the binomial distribution, with a total number of experiments being N and the failure probability p being for example 0.05 ie. 1 minus the VaR confidence level. The failure probability has to be reasonable, so that the model test can be significant. For example, if $p = 0.0001$, we probably won’t have any exceptions, but we also won’t be able to accept the null hypothesis at any significance. Thus it is typical to choose a confidence of 95% or 99%. For regulatory purposes the required probability is 99%.

For a binomial distribution with sample size N and failure probability p, and X being the total number of failures, we have

$$P[X = i] = \binom{N}{i} p^i (1-p)^{N-i}$$

and so

$$P[X \leq x] = \sum_{i=0}^{x} \binom{N}{i} p^i (1-p)^{N-i}$$

We reject the null hypothesis if the number of exceptions is larger than the test level. There are two test levels which correspond to the yellow and red zones. The yellow zone is determined by the Basle Accord as having a 5% Type I error. Thus, if the VaR model is valid, there is only a 5% chance of it being in the yellow zone - in other words, bad luck in terms of the number of exceptions. The red zone is defined by the Basle Accord as having a 0.01% Type I error. Thus if the VaR model is valid, there is only a 0.01% chance that it will have this number of exceptions. This is very generous, because one concludes that once a possibly suspect (but not absurd) model has been approved, only a very poor large number of exceptions. The requirements of models is that parameter estimates be not more than three months old. This is almost laughable. An even half-decent model should have automated parameter updating on a daily basis.
performance subsequently will lead to approval being withdrawn. The Basle regulations ensure that Type I errors are almost impossible, but it allows for a significant proportion of Type II errors.

On a sample of \(N = 250 \) observations, with a failure probability of 0.01, the yellow zone starts with 5 exceptions and the red zone starts with 10 exceptions. Note that 2.5 exceptions are expected.

Presumably, in order to qualify as an approved model, it starts off life in the green zone. Thus, at the time of inception, the daily VaR at the 99% confidence level had at most 4 exceptions. If, at any quarter end, the previous 250 observations had from 5 to 9 exceptions, the model is reclassified into the yellow zone. If it had 10 or more exceptions, it is reclassified into the red zone.

Warning: in many statistics textbooks normal distribution approximations are available for the binomial distribution. These are not to be used here, because they only apply for binominals where the failure probability is ‘not too extreme’, for example, [23] specifies that the normal approximation is only valid if \(0.1 < p < 0.9 \). We are interested in the case where \(p = 0.05 \), \(p = 0.01 \) or perhaps \(p = 0.0001 \).
5.3 Other requirements for internal model approval

Banks that use the internal models approach for meeting market risk capital requirements must have in place a rigorous and comprehensive stress testing program. The stress scenarios need to cover a range of factors that can create extraordinary p&l’s in trading portfolios, or make the control of risk in those portfolios very difficult. These factors include low-probability events in all major types of risks, including the various components of market, liquidity, credit, and operational risks.

The institution must be able to provide information as follows:

- Information on the largest losses experienced during the reporting period.

- Stress testing the current portfolio against past periods of significant disturbance, incorporating both the large price movements and the sharp reduction in liquidity associated with these events.

Stress testing the sensitivity of the bank’s exposure to changes in the assumptions about volatilities and correlations. Due consideration should be given to the sharp variation that at times has occurred in periods of significant market disturbance. The 1987 equity crash, for example, involved correlations within risk factors approaching the extreme values of 1 or -1 for several days at the height of the disturbance.

- Use of scenarios developed by the bank itself to capture the specific characteristics of its portfolio. Banks should provide supervisory authorities with a description of the methodology used to identify and carry out the scenarios as well as with a description of the results derived from these scenarios.

If the testing reveals particular vulnerability to a given set of circumstances, the national authorities would expect the bank to take prompt steps to manage those risks appropriately (eg, by hedging against that outcome or reducing the size of its exposures).

5.4 The new requirements for Basel II - credit and operational risk measures

The Basel Committee’s goal is to finalise the New Accord by the fourth quarter of 2003 with implementation to take effect in G-10 countries by year-end 2006, and later in other countries. However, these countries should aim to implement pillars two and three by that time.

Basel II is based on the so-called three pillars [24]:

45
1. Further developing of capital regulation that encompasses minimum capital requirements, by increasing substantially the risk sensitivity of the minimum capital requirements.

 The current Accord is based on the concept of a capital ratio where the numerator represents the amount of capital a bank has available and the denominator is a measure of the risks faced by the bank and is referred to as risk-weighted assets. The resulting capital ratio may be no less than 8%. Under the proposed New Accord, the regulations that define the numerator of the capital ratio (i.e. the definition of regulatory capital) remain unchanged. Similarly, the minimum required ratio of 8% is not changing. The modifications, therefore, are occurring in the definition of risk-weighted assets, that is, in the methods used to measure the risks faced by banks.

 (a) The treatment of market risk arising from trading activities was the subject of the Basel Committee’s 1996 Amendment to the Capital Accord. The proposed New Accord envisions this treatment remaining unchanged.

 (b) Substantive changes to the treatment of credit risk relative to the current Accord; with three options offered for the calculation thereof.

 (c) The introduction of an explicit treatment of operational risk, that will result in a measure of operational risk being included in the denominator of a bank’s capital ratio; with three options offered for the calculation thereof. Operational risk is defined as the risk of losses resulting from inadequate or failed internal processes, people and systems, or external events.

2. Supervisory review of capital adequacy. Judgements of risk and capital adequacy must be based on more than an assessment of whether a bank complies with minimum capital requirements. This pillar seems to be a statement that empowers the supervisor in this respect.

3. Public disclosure (market discipline). The Committee has sought to encourage market discipline by developing a set of disclosure requirements that allow market participants (stakeholders) to assess key information about a bank’s risk profile and level of capitalisation.²

Calculation methods for credit risk:

1. Standardised Approach: similar to the current Accord in that banks are required to slot their credit exposures into supervisory categories. However, this approach is now very punitive in terms of the amount of capital that needs to be held. Moreover,

²For example, annual reports to shareholders will have to include fairly solid evidence, rather than qualitative meanderings, about the methods of risk control.
the lack of man internationally rated corporates makes this method difficult to apply. Hence banks will be aiming at at least....

2. Foundation Internal ratings-based Approach: an internal model, where the fundamental drivers are

- Probability of default
- Loss given default
- Exposure at default
- Maturity

The first listed input is provided by the bank, the others are set by the supervisor. The probability of default will typically be via the KMV model.

3. Advanced Internal ratings-based Approach: all inputs for an internal model are provided by the bank: these will be at least the factors listed above, there may be others. The loss given default is especially difficult for a bank to quantify, given again the small number of defaults historically, so banks here will typically pass this issue back to the regulator, and stick to the Foundation model. Moreover, some research has shown that in emerging markets, banks tends to have far higher concentration risk levels, and hence this method could be more punitive than would first appear! [25].

Calculation methods for operational risk:

1. Basic Indicator Approach: the measure is a bank’s average annual gross income over the previous three years. This average, multiplied by a factor of 0.15 set by the Committee, produces the capital requirement.

2. Standardised Approach: similar, but banks must calculate a capital requirement for each business line. This is determined by multiplying gross income by specific supervisory factors determined by the Committee.

3. Advanced Measurement Approaches Fairly open ended specifications, stated as aimed to encourage the growth of the quantification of operational risk. Banks using such methods are permitted to recognise the risk mitigating impact of insurance.

The second two methods do not produce a significant saving over the first, so banks will typically opt for the first approach.
<table>
<thead>
<tr>
<th></th>
<th>Credit Risk</th>
<th>Market Risk</th>
<th>Operational Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basel 1988</td>
<td>Standardised approach</td>
<td>Standardised approach</td>
<td>-</td>
</tr>
<tr>
<td>Basel 1996</td>
<td>Standardised approach</td>
<td>St’dised approach</td>
<td>Internal model (VaR, stress)</td>
</tr>
<tr>
<td>Basel 2006++</td>
<td>St’dised approach</td>
<td>Foundational internal rating approach</td>
<td>Advanced Internal rating approach</td>
</tr>
</tbody>
</table>
Chapter 6

Coherent risk measures

6.1 VaR cannot be used for calculating diversification

If f is a risk measure, the diversification benefit of aggregating portfolio’s A and B is defined to be

$$f(A) + f(B) - f(A + B)$$

(6.1)

When using full revaluation VaR as the methodology for computing a risk measure, it’s quite possible to get negative diversification. Pathological examples are possible, but the following example is not absurd:

Suppose one has a portfolio that is made up by a Trader A and Trader B. Trader A has a portfolio consisting of a put that is far out of the money, and has one day to expiry. Trader B has a portfolio that consists of a call that is also far out of the money, and also has one day to expiry. Using any historical VaR approach, say we find that each option has a probability of 4% of ending up in the money.

Trader A and B each have a portfolio that has a 96% chance of not losing any money, so each has a 95% VaR of zero.\(^1\) However, the combined portfolio has only a 92% chance of not losing any money, so its VaR is non-trivial. Therefore we have a case where the risk of the combined portfolio is greater than the risks associated with the individual portfolios, i.e. negative diversification benefit if VaR is used to measure the diversification benefit. This example appears in [26].

What is so awkward about the lack of sub-additivity is the fact that this can give rise to regulatory arbitrage or to the break-down of global risk management within one single firm. This is also a serious concern for regulators. If regulation allows the capital requirement of a firm to be calculated as the sum of the requirements of its subsidiaries and if the

\(^1\)To be precise, their VaR is actually a very small negative number! The average of their V_i’s is negative, the 5th% is zero.
requirements are based on VaR, the firm could create artificial subsidiaries in order to save regulatory capital.

6.2 Risk measures and coherence

This example introduces the concept of a “Coherent Risk Measure”. If \(f(A + B) \leq f(A) + f(B) \), where \(A \) and \(B \) denote portfolios, then \(f \) is said to be coherent [26], [27]. In fact a coherent risk measure needs to satisfy five properties [27], as follows:

- Translation invariance: \(f(A + \alpha r) = f(A) - \alpha r \), where \(r \) is a reference risk free investment. (As David Heath has explained to me, this condition is simply there to ensure that the risk measure and the p&l measure is in the same numeraire, namely, currency.)
- Subadditivity: \(f(A + B) \leq f(A) + f(B) \)
- Positive homogeneity: for all \(\lambda \geq 0 \), \(f(\lambda A) = \lambda f(A) \).
- Monotonicity: if \(A \leq B \) then \(f(A) \leq f(B) \).
- Relevance: if \(A \neq 0 \) then \(f(A) > 0 \).

The property we have focused on means ‘a merger does not create extra risk’, and is a natural requirement [27].
In other words the risk measure f of a portfolio consisting of sub-portfolios A and B would always be less than or equal to the sum of the risk measure of portfolio A with the risk measure of portfolio B. The example above shows that full revaluation VaR is not coherent. It also means that as a conservative measure of risk, one can simply add the risks calculated for the various sub-portfolios, if the measure is coherent.

The earlier example is not a purely theoretical example. In practice, even on large and diverse portfolios, using VaR to calculate the diversification benefit does indeed occasionally lead to the case where this diversification is negative.

There is thus a need for practical and intuitive coherent risk measures. The basic example - originally presented in this country in [28] - is that in the place of a VaR calculation we use a concept known as Expected Tail Loss (ETL) or Expected Shortfall (ES). It is easiest to understand in the setting of a historical-type VaR calculation, let us say 95% VaR. It would entail instead of taking the 5th percentile of the p&l’s to yield a VaR number, take the average of the p&l’s up to the 5th percentile to yield an ES number.

Looking at the 5th percentile we end up with a VaR number which basically represents the best outcome of a set of bad outcomes on a bad day. Using ES we look at an average bad outcome on a bad day. This ES number turns out to be a coherent risk measure [27], [28], [29], and therefore guarantees that the diversification is always positive. As stated in the abstract of [29], “Expected Shortfall (ES) in several variants has been proposed as remedy for the deficiencies of Value-at-Risk (VaR) which in general is not a coherent risk measure”.

A readable account of these and related issues is [30].

One should report both VaR and ES, but use only ES to calculate and report diversification.

Note that because standard deviation is sub-additive the standard RiskMetrics simplification is coherent:

$$\sigma^2(X + Y) = \sigma^2(X) + \sigma^2(Y) + 2\sigma(X)\sigma(Y)\rho$$
$$\leq \sigma^2(X) + \sigma^2(Y) + 2\sigma(X)\sigma(Y)$$
$$= (\sigma(X) + \sigma(Y))^2$$

and so

$$\sigma(X + Y) \leq \sigma(X) + \sigma(Y)$$

and hence

$$\text{VaR}(X + Y) \leq \text{VaR}(X) + \text{VaR}(Y),$$

which is the definition of subadditivity. The usual RiskMetrics VaR is also subadditive (and hence coherent), but this is a mathematical exercise for masochists - it is not easy at all. According to [31] to guarantee sub-additivity of (presumably parametric) VaR, the value of the portfolio has to be a linear function of risk factors whose changes are elliptically distributed.
6.3 Measuring diversification

The diversification benefit of portfolio P_0 is equal to

$$f \left(\sum_{i=1}^{n} P_i \right) + f(P_0) - f \left(\sum_{i=0}^{n} P_i \right)$$

where f denotes ES and P_1, P_2, \ldots, P_n are the (original) portfolios against which the diversification is measured.

6.4 Coherent capital allocation

The intention is to allocate capital costs in a coherent manner. This sounds like quite an otherworldly exercise, but one can make the task quite concrete and ask: of my risk number (such as ES), how much (as a percentage, say) is due to each of my traders? Then, given my capital adequacy charges (which may or may not be calculated via an approved internal model!) I can allocate as a cost the charges in those proportions to each of those desks.

Each desk can break down their own charges amongst their dealers, and management can decide where the greatest risk management focus needs to lie.

[32] has developed a method of allocating the risk capital costs to the various subportfolios in a fair manner, yielding for each portfolio, a risk appraisal that takes diversification into account. We wish to thank Freddie Delbaen, who contributed significantly to that paper, for clarifying certain issues.

The approach of [32] is axiomatic, starting from a risk measure which is coherent in the above sense. We may specialise the results of [32] to the case of the coherent Expected Shortfall risk measure in which case his results become quite concrete.

An allocation method for risk capital is then said to be coherent if

- The risk capital is fully allocated to the portfolios, in particular, each portfolio can be assigned a percentage of the total risk capital.
- There is ‘no undercut’: no portfolio’s allocation is higher than if they stood alone. Similarly for any coalition of portfolios and coalition of fractional portfolios.
- ‘Symmetry’: a portfolio’s allocation depends only on its contribution to risk within the firm, and nothing else.
- ‘Riskless allocation’: a portfolio that increases its cash position will see its allocated capital decrease by the same amount.
All of these requirements have precise mathematical formulations.

A coherent allocation is to be understood as one that is fair and credible.

One should not be surprised to be told that this a a game theoretic problem where the portfolios are players, looking for their own optimal strategy. [32] applies some results from game theory to show that the so-called Aumann-Shapley value from game theory is an appropriate allocation (it is a Nash equilibrium). Further, some results (fairly easy to derive in this special case) from [33] on the differentiability of Expected Shortfall show that the Aumann-Shapley value is given by

\[K_i = -\mathbb{E}[X_i | X \leq q_\alpha] \]

where \(X_i \) denotes the (random vector of) p&l’s of the \(i^{th} \) portfolio, \(X = \sum_j X_j \) is the vector of p&l’s of the company, and \(q_\alpha \) is the \(\alpha \) percentile of \(X \).

<table>
<thead>
<tr>
<th>Capital allocation</th>
<th>ETL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank</td>
<td>23,254,108</td>
</tr>
<tr>
<td>Business A</td>
<td>86.42%</td>
</tr>
<tr>
<td>Desk T</td>
<td>4.33%</td>
</tr>
<tr>
<td>Book T1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Book T2</td>
<td>4.24%</td>
</tr>
<tr>
<td>Desk E</td>
<td>81.47%</td>
</tr>
<tr>
<td>Book E1</td>
<td>72.39%</td>
</tr>
<tr>
<td>Book E2</td>
<td>0.49%</td>
</tr>
<tr>
<td>Book E3</td>
<td>1.34%</td>
</tr>
<tr>
<td>Book E4</td>
<td>7.25%</td>
</tr>
<tr>
<td>Desk R</td>
<td>0.90%</td>
</tr>
<tr>
<td>Book R1</td>
<td>-0.25%</td>
</tr>
<tr>
<td>Book R2</td>
<td>0.001%</td>
</tr>
<tr>
<td>Book R3</td>
<td>1.14%</td>
</tr>
<tr>
<td>Broker</td>
<td>-0.28%</td>
</tr>
<tr>
<td>Business B</td>
<td>10.32%</td>
</tr>
<tr>
<td>Desk B1</td>
<td>9.46%</td>
</tr>
<tr>
<td>Desk B2</td>
<td>0.87%</td>
</tr>
<tr>
<td>Business C</td>
<td>3.26%</td>
</tr>
</tbody>
</table>

Figure 6.1: Coherent capital allocation using ETL

Hence, as a percentage of total capital, the capital cost for the \(i^{th} \) portfolio is

\[\frac{\mathbb{E}[X_i | X \leq q_\alpha]}{\mathbb{E}[X | X \leq q_\alpha]} \]

In the context of any historical or Monte Carlo type VaR model, this fraction is easy to calculate:
• The denominator is the average of the $1 - \alpha\%$ worst p&l’s of the entire bank,
• The numerator is the average of the p&l’s that correspond to the same experiments as in the denominator.

An example of how this might transpire is diagrammed.

6.5 Greek Attribution

The same procedure can be followed to attribute the risk to the various Greeks. Suppose, for simplicity, that we have a single equity option and we wish to decompose the risks. Assume that we are using a historical-type or Monte Carlo method for calculating our VaR or ES. Then we can consider the p&l’s generated by the various historical or Monte Carlo experiments. Of course, our risk measure is calculated by looking at the tail of this distribution of p&l’s.

By considering a first order (delta-gamma-rho-vega-theta) Taylor series expansion as follows:

$$
dV \simeq \delta \Delta S + \frac{1}{2} \gamma \Delta S^2 + \rho \Delta r + \mathcal{V} \Delta \sigma + \theta \Delta t
$$

we can attribute the p&l in each experiment as

$$
dV_i = \Delta(S_i - S) + \frac{1}{2} \Gamma(S_i - S)^2 + \rho(r_i - r) + \mathcal{V} \sigma_i - \sigma) + \theta \delta t + \epsilon_i
$$

where S is the original spot, S_i is the i^{th} spot experiment, etc. The p&l’s due to delta are the $\Delta(S_i - S)$, and we can attribute to delta the proportion of the ES of the entire position. The same follows for the remaining greeks.

<table>
<thead>
<tr>
<th>Long position</th>
<th>Short position</th>
</tr>
</thead>
<tbody>
<tr>
<td>full VaR</td>
<td>full VaR</td>
</tr>
<tr>
<td>full ETL</td>
<td>full ETL</td>
</tr>
<tr>
<td>greek VaR</td>
<td>greek VaR</td>
</tr>
<tr>
<td>greek ETL</td>
<td>greek ETL</td>
</tr>
</tbody>
</table>

Figure 6.2: Coherent greek attribution using ES
One does not include higher order (mixed) partial derivatives in this expansion, because such effects will be implicit in the historical experiments one is creating (and should be implicit in the Monte Carlo, if the generator is built sufficiently well).

One things need to be checked for: namely, that the ϵ_i are not material. Of course, the method is attributing a percentage to this error term, which should not be more than a couple of percent. After all, the error term is a measure of how well the Taylor series expansion is fitting the actual p&l. As expected, for more complicated products, these errors can be more material, and the method should not be used.
Figure 6.3: The Taylor expansion attribution method works well for vanillas, but can fail for exotics.
Bibliography

[22] Basel Committee on Banking Supervision. Supervisory framework for the use of ‘back-testing’ in conjunction with the internal models approach to market risk capital requirements. www.bis.org/publ/bcbs22.htm, January 1996.

